算法之美:期望DP与概率。

摘要

Sengxian师兄的blog中,期待DP是一个重要的话题。虽然只有少数题目仅涉及几率,但大部分题目需要将几率和期望结合起来。本文将介绍期待DP的几种常见方法。

正文

文中学习培训自 Sengxian 师兄的blog

以前也在CF上写了一些几率DP的题并做了汇总

提议阅读文章完文中再去然后阅读文章本文:Here

序言

单纯性仅用到几率的题并并不是许多,从目前的 OI/ACM 赛事中看来,大部分题型必须 几率与期待融合起來(期待便是用几率界定的),因此文中关键叙述期待 DP。

期待 DP 有一些固定不动的方式,这儿分多种多样方式来叙述。


解读

例一

#3036. 绿豆蛙的归处

句意:

给出一个起始点为 \(1\),终点站为 \(n\) 的有向无环图。抵达每一个端点时,如果有 \(K\) 条离去该点的路面,能够 挑选随意一条路面离去该点,而且迈向每一条路的几率为 \(\frac 1 K\)。询问你从 \(1\) 考虑来到 \(n\) 的途径期待总长多少钱。

方式一:立即界定期待情况

这题的终点站很确立,那便是来到 \(n\) 即终止。针对期待 DP,大家一般选用反序的方法来界定情况,即考虑到从当今情况抵达终点站的期待成本。由于在大部分状况下,终点站不唯一,而起始点是唯一的。
大家界定 \(dp(i)\)为从 \(i\) 考虑来到终点站 \(n\) 的途径期待总长,依据全期望公式,获得(设​ \(G_i\)为从 \(i\) 的边的结合):

\[dp(i) = \sum\limits_{e\in G_i}\frac{dp(e_{to}) e_{const}}{|G_i|}
\]

由于这是一个有向无环图,每一个点必须 其能抵达的点的情况,故大家选用拓扑结构序的反序开展测算就可以。

【AC Code】

const int N = 100000, M = 2 * N;
int n, m;
struct node { int v, w;};
vector<node>e[N];
int d[N];    // 出度
double f[N]; // dp

double dfs(int u) {
    if (f[u] >= 0)return f[u];
    f[u] = 0;
    for (auto [v, w] : e[u]) { // tuple 需打开 C  17
        f[u]  = (w   dfs(v)) / d[u];
    }
    return f[u];
}

int main() {
    cin.tie(nullptr)->sync_with_stdio(false);
    memset(f, -1, sizeof(f));
    cin >> n >> m;
    for (int i = 0; i < m;   i) {
        int u, v, w;
        cin >> u >> v >> w;
        e[u].push_back(node{v, w});
        d[u]  ;//出度  
    }
    cout << fixed << setprecision(2) << dfs(1);
}

方式二:运用期待的线形特性

依据期待的线形特性,\(E[aX bY]=aE[X] bE[Y]\)。因此此外一种求期待的方法是各自算出每一种成本造成的期待奉献,随后求和获得回答。在题中中,途径期待总长相当于一条边造成的期待奉献之和。而一条边造成又相当于历经这条边的期待频次乘这条边的成本。因此,大家只必须 算每条边的期待历经频次就可以。

\((u,v,w)\) 的期待历经频次是不太好立即算的,但如果我们能算得点 \(u\) 的期待历经频次为 \(dp(u,v)\),那麼边 \((u,v,w)\) 的期待历经频次是 \(dp(u)*\frac1{|G_u|}\) ,对答案的奉献便是 \(w*dp(u)*\frac1{|G_u|}\)

如何计算点 \(u\) 的期待历经频次 \(dp(u)\)呢?大家仍然考虑到 DP 的方法,最先有 \(dp(u) = 1\),迁移采用刷表的方法:

\[dp(e_{to})\leftarrow dp(u)*\frac1{|G_u|},e\in G_u
\]

在使用 边 \(e\) 刷表的与此同时,边 \(e\) 的奉献就可以测算了,十分简约。由于这类方式测算回答十分的方便快捷,并且应用领域广,因此这类『运用期待的线形特性,独立测算奉献的方式』是大家测算期待优选的方式。

【AC Code】这儿贴 Sengxian 师兄的编码

typedef long long ll;
inline int readInt() {
    static int n, ch;
    n = 0, ch = getchar();
    while (!isdigit(ch)) ch = getchar();
    while (isdigit(ch)) n = n * 10   ch - '0', ch = getchar();
    return n;
}

const int MAX_N = 100000   3, MAX_M = MAX_N * 2;
struct edge {
    edge *next;
    int to, cost;
    edge(edge *next = NULL, int to = 0, int cost = 0): next(next), to(to), cost(cost) {}
} pool[MAX_M], *pit = pool, *first[MAX_N];
int n, m, deg[MAX_N], outDeg[MAX_N];
double f[MAX_N];

void solve() {
    static int q[MAX_N];
    int l = 0, r = 0;
    q[r  ] = 0;

    double ans = 0;
    f[0] = 1.0;
    while (r - l >= 1) {
        int u = q[l  ];
        for (edge *e = first[u]; e; e = e->next) {
            f[e->to]  = f[u] / outDeg[u];
            ans  = f[u] * e->cost / outDeg[u];
            if (--deg[e->to] == 0) q[r  ] = e->to;
        }
    }

    printf("%.2f\n", ans);
}

int main() {
    n = readInt(), m = readInt();
    for (int i = 0, u, v, w; i < m;   i) {
        u = readInt() - 1, v = readInt() - 1, w = readInt();
        first[u] = new (pit  ) edge(first[u], v, w);
        deg[v]  , outDeg[u]  ;
    }
    solve();
}

例二

然后大家考虑到 Codeforces 518D 这题,便于感受方式二的益处。

句意:\(n\) 本人排成一列,每秒钟中团队最前边的人有 \(p\) 的几率踏入电梯轿厢(一旦踏入就不容易下电梯轿厢),或是有 \(1-p\) 的几率没动。询问你 \(T\) 秒之后,在电梯轿厢上的人的期待。

方式一

在题中那样一个状况中,方式一是用不上的,由于大家的完毕情况不确立。

方式三:应用期待的界定测算

假如 \(X\) 是离散变量的随机变量,輸出数值 \(x_1,x_2,…\),輸出值相对应的几率为 \(p_1,p_2,…\),那麼期待值是一个无尽数列的和(如果不收敛性,那麼期待不会有):

\[E[x] =\sum\limits_ip_ix_i
\]

在题中中,假如设 \(dp(i,j)\)\(i\) 秒之后,电梯轿厢上面有 \(j\) 本人的几率,那麼回答是:

\[\sum\limits_{0\le k\le n}dp(T,K)*K
\]

因此大家只需规定 \(dp(i, j)\) 就可以了,初值 \(dp(0, 0) = 1\) 就可以了,依然是选用刷表法:

\[dp(i 1,j 1) \leftarrow dp(i,j)*p\\
dp(i 1,j)\leftarrow dp(i,j) * (1 – p)
\]

【AC Code】

const int N = 2e3   10;
double p, dp[N][N];
int main() {
    cin.tie(nullptr)->sync_with_stdio(false);
    int n, t;
    cin >> n >> p >> t;
    dp[0][0] = 1;
    for (int i = 0; i < t;   i) {
        dp[i   1][n]  = dp[i][n];
        for (int j = 0; j < n;   j) if (dp[i][j] > 1e-10) {
                dp[i   1][j   1]  = dp[i][j] * p;
                dp[i   1][j]  = dp[i][j] * (1 - p);
            }
    }
    double ans = 0;
    for (int i = 0; i <= n;   i) ans  = i * dp[t][i];
    cout << fixed << setprecision(6) << ans;
}

方式二

那麼以前提及的应用领域广的方式二,是不是能在这儿用呢?回答是毫无疑问的。

持续方式三的 DP,大家何不将情况中间的迁移抽象性成边,只不过是仅有 \(dp(i, j)\)\(dp(i 1, j 1)\) 的边才有所为 \(1\) 的边权,其他都为 \(0\)。由于这一 DP 包含了全部很有可能发生的状况,因此大家依然能够 运用期待的线形特性,在刷表的全过程中开展测算回答。

题中中,沒有形象化的边的定义,可是我们可以将情况中间的迁移抽象性成边,因为 \(dp(i, j)\)\(dp(i 1, j 1)\) 这一个迁移是对答案有 \(1\) 的奉献的,因此大家将他们中间的边权赋为 \(1\)

这一题将方式二抽象概念了,事实上大部分题并不是是形象化的,只是这类抽象性的方式。

const int N = 2e3   10;
double p, dp[N][N];
int main() {
    cin.tie(nullptr)->sync_with_stdio(false);
    int n, t;
    cin >> n >> p >> t;
    dp[0][0] = 1;
    double ans = 0;
    for (int i = 0; i < t;   i) {
        dp[i   1][n]  = dp[i][n];
        for (int j = 0; j < n;   j) if (dp[i][j] > 1e-10) {
                dp[i   1][j   1]  = dp[i][j] * p;
                dp[i   1][j]  = dp[i][j] * (1 - p);
                ans  = dp[i][j] * p;
            }
    }
    cout << fixed << setprecision(6) << ans;
}

例三

BZOJ 3450

句意:给出一个编码序列,一些部位不确定(是 \(\texttt{o}\)\(\texttt{x}\) 的概率各占 \(\P%\))。针对一个 \(\texttt{ox}\) 编码序列,持续 \(x\) 长短的 \(\texttt{o}\) 会获得 \(x^2\) 的盈利,我想问一下最后获得的编码序列的期待盈利多少钱?

剖析

这一题假如一段一段的解决,事实上并并不是非常好做。大家观查到 \((x 1) ^ 2 – x ^ 2 = 2x 1\),那麼依据期待的线形特性,我们可以独立算每一个字符的奉献。大家设 \(dp_i\) 为考虑到前 ii 字符的期待评分,\(l_i\) 为以 \(i\) 为末尾的 comb 的期待长短,\(Comb_i\) 为第 \(i\)字符,那麼有 3 种状况:

  1. \(s_i = o\) ,则 \(dp_i = dp_{i – 1} l_{i – 1} * 2 1,l_i = l_{i – 1} 1\)
  2. \(s_i = x\) ,则 \(dp_i = dp_{i – 1}\)
  3. \(s_i =\ ?\), 则 \(dP_i = dp_{i – 1} \frac{l_i*2 1}{2},l_i = \frac{l_{i – 1} 1}{2}\)

针对前二种状况,实际上 是十分形象化的,针对第三种状况,事实上是求了一个总长度。比如 ?oo,二种状况的长短 \(l_i\) 各自为 \([0,1,2]\)\([1,2,3]\) ,可是求了均值以后,长短 \(l_i\) 变成了 \([0.5,1.5,2.5]\) ,那样因为大家的奉献是一个有关长短的一次代数式 \((2x 1)\) ,因此长短均值以后,奉献也等同于求了一个均值,当然可以求取恰当的评分期待。

【AC Code】

const int N = 3e5   10;
double dp[N], Comb[N];
int main() {
    cin.tie(nullptr)->sync_with_stdio(false);
    int n; string s;
    cin >> n >> s;
    for (int i = 0; i < n;   i) {
        if (s[i] == 'o') {
            dp[i] = dp[i - 1]   Comb[i - 1] * 2   1;
            Comb[i] = Comb[i - 1]   1;
        } else if (s[i] == 'x') {
            dp[i] = dp[i - 1];
            Comb[i] = 0;
        } else {
            dp[i] = dp[i - 1]   (Comb[i - 1] * 2   1) / 2;
            Comb[i] = (Comb[i - 1]   1) / 2;
        }
    }
    cout << setprecision(4) << fixed << dp[n - 1];
}

思索:假如长短为 \(a\) 的 comb 的奉献为 \(a^3\) 时该如何解决?

Tips:因为 \((a 1)^3 – a^3 = 3a^3 3a 1\) ,因此我们要维护保养 \(a^2\)\(a\) 的期待,留意 \(E_{a^2} \not= E^2_a\),因此维护保养 \(a^2\) 的期待是必需的。


例四

BZOJ 4318

句意:给出一个编码序列,每一个部位 \(o\) 的概率为 \(p_i\) ,为 \(x\) 的概率为 \(1-p_i\) 。针对一个 \(\texttt{ox}\) 编码序列,持续 \(x\) 长短的 \(\texttt{o}\) 会获得 \(x^3\) 的盈利,我想问一下最后获得的 \(ox\) 编码序列的期待盈利多少钱?

剖析

持续例三的构思,大家或是各自求每一个部位的奉献。依据 \((a 1)^3 – a^3 = 3a^3 3a 1\),大家只必须 维护保养 \(l(i)\)为以 \(i\) 为末尾的 comb 的期待长短,\(l_2(i)\)为以 \(i\) 为末尾的 comb 的期待长短的平方米。留意 \(E[a^2] \not =E^2[a]\),因此维护保养 \(a^2\) 的期待是必需的。

int main() {
    cin.tie(nullptr)->sync_with_stdio(false);
    int n;
    double p, l1 = 0, l2 = 0, ans = 0;
    cin >> n;
    for (int i = 0; i < n;   i) {
        cin >> p;
        ans  = (3 * l2   3 * l1   1) * p;
        l2 = (l2   2 * l1   1) * p;
        l1 = (l1   1) * p;
    }
    cout << fixed << setprecision(1) << ans;
}

汇总

期待 DP 一般来说有它固定不动的方式,一种方式是立即 DP,界定情况为到终点站期待,选用反序测算获得回答。一种方式是运用期待的线形特性,对奉献各自测算,这类方式一般规定大家求出每一种成本的期待应用频次,而每一种成本通常反映在 DP 的迁移当中。最终的2个练习题是典型性的分离出来自变量,用期待的线形特性测算回答的事例,假如情况过度极大,那麼就得考虑到分离出来随机变量了。

本汇总仅仅表述了几率与期待 DP 的冰一角,它能够 变幻无常,但这些事实上并不只归属于几率与期待 DP,真真正正关键的內容,或是逃不了大家几类方式。

要想深入了解一些几率的DP的请阅读文章本文:Here

The desire of his soul is the prophecy of his fate
你生命的冲动,就是你运势的先知。

关注不迷路

扫码下方二维码,关注宇凡盒子公众号,免费获取最新技术内幕!

温馨提示:如果您访问和下载本站资源,表示您已同意只将下载文件用于研究、学习而非其他用途。
文章版权声明 1、本网站名称:宇凡盒子
2、本站文章未经许可,禁止转载!
3、如果文章内容介绍中无特别注明,本网站压缩包解压需要密码统一是:yufanbox.com
4、本站仅供资源信息交流学习,不保证资源的可用及完整性,不提供安装使用及技术服务。点此了解
5、如果您发现本站分享的资源侵犯了您的权益,请及时通知我们,我们会在接到通知后及时处理!提交入口
0

评论0

请先

站点公告

🚀 【宇凡盒子】全网资源库转储中心

👉 注册即送VIP权限👈

👻 全站资源免费下载✅,欢迎注册!

记得 【收藏】+【关注】 谢谢!~~~

立即注册
没有账号?注册  忘记密码?

社交账号快速登录